Question	Answer	Marks
1(a)(i)	n /oxygen/fluorine/neon;	1
1(a)(ii)		1
1(a)(iii)		1
1(a)(iv)	ni	1
1(a)(v)		1
1(a)(vi)		1
1(a)(vii)	/fluorine;	1
1(a)(viii)		1
1(b)(i)	₂ O _{3;}	1
1(b)(ii)	₃ N;	1

Question	Answer				Mark	s			
2(a)(i)	number of protons in one atom of an element;						1		
2(a)(ii)	M1 <u>number of protons and neut</u> M2 in one atom of an element;	<u>rons</u> in o	ne atom	of an ele	ment;			1 1	2
2(b)		А	6	6	6	¹² ₆ C			6
		В	12	12	12	²⁴ ₁₂ Mg;			
		С	8	10;	8;	¹⁶ ₈ O ²			
		D	11	10	13	²⁴ ₁₁ Na⁺ 11, 24; Na;+;			

Question	Answer	Marks
3(a)	the number of e gained or lost = numerical value of oxidation state;	1
	 any two from: Na to Al (Si) lose e ; (Si) P to Cl gain e ; Si gains and loses e /Ar neither gains nor loses e ; 	2
3(b)	M1 positive ions/cations/metallic ions; the (correct) particles named in M1 are arranged in a lattice/rows/layers; sea of electrons/delocalised electrons;	3
3(c)	they have mobile electrons;	1
3 (d)	chlori	1
3(e)	strong covalent bonds ; in a giant lattice/macromolecule/giant (structure);	2
Question	Answer	Marks
3(f)	 any two from: sodium chloride is ionic and PCl₃ is covalent; ionic bonds are strong and intermolecular forces are weak; PCl₃ reacts with water and NaCl does not; 	2
3(g)	MgO will react with/dissolve in/neutralise hydrochloric acid/acid/acid oxide; if amphoteric, MgO will react with or dissolve in or neutralise hydrochloric acid or acid or acid oxide and MgO will react with dissolve in or neutralise sodium hydroxide or alkali or base or basic oxide; MgO will not react with or dissolve in or neutralise sodium hydroxide or alkali or base or basic oxide = [2]	2
3(h)	$\begin{bmatrix} x \\ x $	3

Question	Answer	Marks
4 (a)	sul dioxide/SO ₂ ;	1
4(b)	hydr /H ₂ ;	1
4(c)	et /C ₂ H ₄ ;	1
4(d)	a /Ar;	1
4(e)	car monoxide/CO;	1
4(f)	met /CH ₄ ;	1

5(a)	M1 add chlori n e to (potassium) iodi d e solution;		Solution must be implied for M1 A any soluble iodide solution
	M2 red/brown/yellow/orange (solution) is formed;		A black (ppt or solid)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	A multiples I state symbols but KI(aq) would allow the solution aspect of mark in M1
5(b)	M1 (0.013 moles of I and 0.065 moles of F atoms gives a) ratio 1:5;		Award 2 marks for IF_5
	Formula = IF_5 ;	2	A one mark for I_5F (as ratio is inverted) A one mark for IF l_5 or I_5Fl

Question	Answer	Marks	Guidance
5(c)(i)	example of a reversible reaction including attempts at removing/adding waters of crystallisation OR example of a reaction which under closed conditions would be reversible;	1	 A written description of the reaction e.g. 'Haber process' unless equation is attempted in which case ignore written description A word equations/unbalanced equations A equations without equilibrium arrows I descriptions of physical changes
5(c)(ii)	Any two from: (a reaction) M1 which can take place in both directions OR which can be approached from both directions;		 I reference to 'closed system' A 'a reaction which can go forwards and backwards' for M1 I 'a reaction with an equilibrium arrow' or with '≓' for M1
	M2 in which concentrations/macroscopic properties do not change (with time);		R concentrations (of reactants and products) are the same
	M3 the two reaction rates are equal;	2	
5(d)	M1 equilibrium goes to LHS OR equilibrium goes to reactants side;		 A reaction goes to LHS but R 'equilibrium goes to LHS and to products side' A backward reaction is favoured I less yield or less products
	M2 because the concentration of chlorine decreases;	2	 A 'reactant' for 'chlorine' but not reactants A to replace missing chlorine

Question	Answer	Marks	Guidance
5(e)	M1 equilibrium goes to RHS OR equilibrium goes to products side;		 A reaction goes to RHS but R 'equilibrium goes to RHS and to reactants side' A forward reaction is favoured I more yield or more products
	M2 exothermic reactions are favoured by low temperatures;		A for M1 and M2 'decreasing temperature makes the equilibrium go to RHS'
	M3 the forward reaction is exothermic;	3	A backward reaction is endothermic

Question	Answer	Marks	Guidance
6(a)	high melting point/mp/mpt OR high boiling point/bp/bpt; poor/non conductor (when liquid and/or solid);	3	I mpt/bpt above room temp
(b)	(good) conductor when <u>solid</u> (and liquid);	2	A (good) conductor in any state / both states I high melting point/boiling point R low melting point/boiling point
(c)	melting point/–7 (°C) is below room temperature/25 (°C)/RTP ora; boiling point/59 (°C) is above room temperature/25 (°C)/RTP ora;	3	I low melting point/boiling point/conductivity 25 (°C)/room temperature/RTP is in between –7 (°C) and 59 (°C) OR 25 (°C)/room
		5	temperature/RTP is between mpt and bpt would both score the 2 evidence marks
(d)	high melting point/mp/mpt OR high boiling point/bp/bpt;		A melting point and boiling point both above room temp/25°C/RTP
	BOTH poor/non conductor when solid and good conductor when liquid OR molten/only conduct when liquid;	3	I conducts when aqueous or in solution I conducts in liquid due to free electrons